4.2 Tangent and Normal

4.2.1 Slope of the Tangent and Normal

(1) **Slope of the tangent :** If tangent is drawn on the curve y = f(x) at point $P(x_1, y_1)$ and this tangent makes an angle ψ with positive *x*-direction then,

 $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \tan \psi$ = slope of the tangent

Note:
$$\Box$$
 If tangent is parallel to *x*-axis $\psi = 0 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = 0$

□ If tangent is perpendicular to *x*-axis $\psi = \frac{\pi}{2} \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \infty$

(2) **Slope of the normal :** The normal to a curve at $P(x_1, y_1)$ is a line perpendicular to the tangent at *P* and passing through *P* and slope of the normal = $\frac{-1}{\text{Slope of tangent}}$ =

$$\frac{-1}{\left(\frac{dy}{dx}\right)_{P(x_1,y_1)}} = -\left(\frac{dx}{dy}\right)_{P(x_1,y_1)}$$

Wole : If normal is parallel to *x*-axis

$$\Rightarrow -\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \text{ or } \left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0$$

□ If normal is perpendicular to *x*-axis (for parallel to *y*-axis)

$$\Rightarrow -\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0$$

Example: 1The slope of the tangent to the curve $x^2 + y^2 = 2c^2$ at point (c, c) is[AMU 1998](a) 1(b) - 1(c) 0(d) 2Solution: (b)Given $x^2 + y^2 = 2c^2$ Differentiating w.r.t. x, $2x + 2y \frac{dy}{dx} = 0$

Get More Learning Materials Here : 💶

CLICK HERE

 $\Rightarrow 2y \frac{dy}{dx} = -2x \Rightarrow \frac{dy}{dx} = \frac{-x}{y} \Rightarrow \left(\frac{dy}{dx}\right)_{(x,y)} = -1$ The line x + y = 2 is tangent to the curve $x^2 = 3 - 2y$ at its point Example: 2 [MP PET 1998] (c) $(\sqrt{3}, 0)$ (b) (-1, 1) (a) (1, 1) (d) (3, - 3) **Solution:** (a) Given curve $x^2 = 3 - 2y$ diff. w.r.t. x, $2x = -\frac{2dy}{dx}$; $\frac{dy}{dx} = -x$ Slope of the line = -1 $\frac{dy}{dx} = -x = -1; \quad x = 1$ $\therefore y = 1$ point (1, 1) The tangent to the curve $y = 2x^2 - x + 1$ at a point *P* is parallel to y = 3x + 4, the co-ordinate of *P* are **[Rajasthan H** Example: 3 (a) (2, 1) (b) (1, 2) (c) (-1, 2) (d) (2, - 1) **Solution:** (b) Given $y = 2x^2 - x + 1$ Let the co-ordinate of *P* is (*h*, *k*) then $\left(\frac{dy}{dx}\right)_{(k-1)} = 4h-1$ Clearly 4h-1=3 $h=1 \implies k=2.P$ is (1, 2).

4.2.2 Equation of the Tangent and Normal

186 Application of Derivatives

(1) **Equation of the tangent :** We know that the equation of *a* line passing through a point $P(x_1, y_1)$ and having slope *m* is $y - y_1 = m(x - x_1)$

Slope of the tangent at (x_1, y_1) is $= \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

The equation of the tangent to the curve y = f(x) at point $P(x_1, y_1)$ is

$$y - y_1 = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1)$$

(2) Equation of the normal : Slope of the Normal = $\frac{-1}{\left(\frac{dy}{dx}\right)_{(x-x)}}$

Thus equation of the normal to the curve y = f(x) at point $P(x_1, y_1)$

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

Wate : \Box If at any point $P(x_1, y_1)$ on the curve y = f(x), the tangent makes equal angle with the axes, then at the point *P*, $\psi = \frac{\pi}{4}$ or $\frac{3\pi}{4}$. Hence, at *P* tan $\psi = \frac{dy}{dx} = \pm 1$. The equation of the tangent at (-4, -4) on the curve $x^2 = -4y$ is Example: 4 [Karnataka CET 2001] (d) 2x - y + 4 = 0(b) 2x - y - 12 = 0(c) 2x + y - 4 = 0(a) 2x + y + 4 = 0 $x^2 = -4y \implies 2x = -4 \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{-x}{2} \implies \left(\frac{dy}{dx}\right)_{(A-A)} = 2.$ Solution: (d) We know that equation of tangent is $(y - y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_2)} (x - x_1) \Rightarrow y + 4 = 2(x + 4) \Rightarrow 2x - y + 4 = 0$. The equation of the normal to the curve $y = \sin \frac{\pi x}{2}$ at (1, 1) is Example: 5 (d) $y-1 = \frac{-2}{\pi}(x-1)$ (c) y = x(a) y = 1(b) x = 1**Solution:** (b) $y = \sin \frac{\pi x}{2} \Rightarrow \frac{dy}{dx} = \frac{\pi}{2} \cos \frac{\pi}{2} x \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 0$ \therefore Equation of normal is $y-1 = \frac{1}{2}(x-1) \Rightarrow x = 1$. The equation of the tangent to the curve $y = be^{-x/a}$ at the point where it crosses *y*-axis is Example: 6 (b) ax - by = 1 (c) $\frac{x}{a} - \frac{y}{b} = 1$ (a) ax + by = 1(d) $\frac{x}{a} + \frac{y}{b} = 1$ **Solution:** (d) Curve is $y = be^{-x/a}$ Since the curve crosses *y*-axis (*i.e.*, x = 0) \therefore y = bNow $\frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$. At point (0, b), $\left(\frac{dy}{dx}\right)_{a=1} = \frac{-b}{a}$ \therefore Equation of tangent is $y-b = \frac{-b}{a}(x-0) \Rightarrow \frac{x}{a} + \frac{y}{b} = 1$. If the normal to the curve y = f(x) at the point (3,4) makes an angle $\frac{3\pi}{4}$ with the positive *x*-axis then Example: 7 f'(3) is equal to [IIT Screening 2000; DCE 2001] (b) $\frac{-3}{4}$ (c) $\frac{4}{3}$ (a) – 1 (d) 1 **Solution:** (d) Slope of the normal $=\frac{-1}{dy/dx} \Rightarrow \tan \frac{3\pi}{4} = \frac{-1}{\left(\frac{dy}{dx}\right)_{2,4}}$ $\therefore \left(\frac{dy}{dx}\right) = 1; f'(3) = 1.$ The point (s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical (parallel to *y*-axis), is are[IIT Screenin Example: 8 (a) $\left[\pm \frac{4}{\sqrt{3}}, -2\right]$ (b) $\left(\pm \frac{\sqrt{11}}{3}, 1\right)$ (c) (0,0)(d) $\left(\pm\frac{4}{\sqrt{3}},2\right)$ **Solution:** (d) $y^3 + 3x^2 = 12y$

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

	$\Rightarrow 3y^2 \cdot \frac{dy}{dx} + 6x = 12 \cdot \frac{dy}{dx} \Rightarrow \frac{dy}{dx} (3y^2 - 12) + 6x = 0 \Rightarrow \frac{dy}{dx} = \frac{6x}{12 - 3y^2} \Rightarrow \frac{dx}{dy} = \frac{12 - 3y^2}{6x}$										
	Tangent is parallel to <i>y</i> -axis, $\frac{dx}{dy} = 0 \implies 12 - 3y^2 = 0$ or $y = \pm 2$. Then $x = \pm \frac{4}{\sqrt{3}}$, for $y = 2$										
	y = −2 does not satisfy the equation of the curve, \therefore The point is $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$										
Example: 9	At which point the line	$\frac{x}{a} + \frac{y}{b} = 1$ touches the cu	rve $y = be^{-x/a}$	[Rajasthan PET 1999]							
	(a) (0, 0)	(b) (0, a)	(c) (0, <i>b</i>)	(d) (<i>b</i> , 0)							
Solution: (c)	Let the point be (x_1, y_1) .	$\therefore y_1 = b e^{-x_1/a}$	(i)								
	Also, curve $y = be^{-x/a} \Rightarrow \frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$										
	$\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{-b}{a}e^{-x_1/a} = \frac{-y}{a}$	1	(by (i))								
	Now, the equation of tangent of given curve at point (x_1, y_1) is $y - y_1 = \frac{-y_1}{a}(x - x_1) \implies \frac{x}{a} + \frac{y}{y_1} = \frac{x_1}{a} + 1$										
	Comparing with $\frac{x}{a} + \frac{y}{b} =$	1, we get, $y_1 = b$ and 1-	$+\frac{x_1}{a} = 1 \implies x_1 = 0$								
	Hence, the point is (0, <i>b</i>).										
Example: 10	The abscissa of the point, where the tangent to curve $y = x^3 - 3x^2 - 9x + 5$ is parallel to <i>x</i> -axis are [Karnataka										
	(a) 0 and 0	(b) $x = 1$ and -1	(c) $x = 1$ and -3	(d) $x = -1$ and 3							
Solution: (d)	$y = x^3 - 3x^2 - 9x + 5 \implies \frac{dy}{dx}$	$x^2 = 3x^2 - 6x - 9$.									
	We know that this equa	tion gives the slope of	the tangent to the curve.	The tangent is parallel to x -							
axis $\frac{dy}{dx} = 0$											

Therefore, $3x^2 - 6x - 9 = 0 \implies x = -1, 3$.

4.2.3 Angle of Intersection of Two Curves

The angle of intersection of two curves is defined to be the angle between the tangents to the two curves at their point of intersection.

We know that the angle between two straight lines having slopes

$$\phi = \tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$$

Also slope of the tangent at $P(x_1, y_1)$

$$m_1 = \left(\frac{dy}{dx}\right)_{1(x_1, y_1)}$$
, $m_2 = \left(\frac{dy}{dx}\right)_{2(x_1, y_1)}$

Thus the angle between the tangents of the two curves $y = f_1(x)$ and $y = f_2(x)$

$\tan \phi = \frac{\left(\frac{dy}{dx}\right)_{l(x_1, y_1)}}{\left(\frac{dy}{dx}\right)_{l(x_1, y_1)}} = \frac{dy}{dx}$	$\left(\frac{dy}{dx}\right)_{2(x_1,y_1)}$
$\tan \varphi = \frac{1}{1 + \left(\frac{dy}{dx}\right)_{1(x_1, y_1)}}$	$\int \left(\frac{dy}{dx}\right)_{2(x_1,y_1)}$

Orthogonal curves : If the angle of intersection of two curves is right angle, the two curves are said to intersect orthogonally. The curves are called orthogonal curves. If the curves are orthogonal, then $\phi = \frac{\pi}{2}$

$$m_1m_2 = -1 \implies \left(\frac{dy}{dx}\right)_1 \left(\frac{dy}{dx}\right)_2 = -1$$

Example: 11 The angle between the curves $y^2 = x$ and $x^2 = y$ at (1, 1) is

(a)
$$\tan^{-1}\frac{4}{3}$$
 (b) $\tan^{-1}\frac{3}{4}$ (c) 90° (d) 45

Solution: (b) Given curve $y^2 = x$ and $x^2 = y$

Differentiating w.r.t. x, $2y \frac{dy}{dx} = 1$ and $2x = \frac{dy}{dx}$

$$\left(\frac{dy}{dx}\right)_{(1,1)} = \frac{1}{2}$$
 and $\left(\frac{dy}{dx}\right)_{(1,1)} = 2$

Angle between the curve

$$\Rightarrow \tan \phi = \frac{2 - \frac{1}{2}}{1 + \frac{1}{2} \cdot 2} \Rightarrow \tan \phi = \frac{3}{4} \Rightarrow \phi = \tan^{-1} \frac{3}{4} \cdot \frac{3}{4}$$

Example: 12 If the two curves $y = a^x$ and $y = b^x$ intersect at α , then $\tan \alpha$ equal

[MP PET 2001]

🚓 www.studentbro.in

(a) $\frac{\log a - \log b}{1 + \log a \log b}$ (b) $\frac{\log a + \log b}{1 - \log a \log b}$ (c) $\frac{\log a - \log b}{1 - \log a \log b}$ (d) None of these

Solution: (a) Clearly the point of intersection of curves is (0, 1) Now, slope of tangent of first curve, $m_1 = \frac{dy}{dx} = a^x \log a \implies \left(\frac{dy}{dx}\right)_{(0,1)} = m_1 = \log a$

Slope of tangent of second curve,
$$m_2 = \frac{dy}{dx} = b^x \log b \implies m_2 = \left(\frac{dy}{dx}\right)_{(0,1)} = \log b$$

:
$$\tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{\log a - \log b}{1 + \log a \log b}$$
.

Example: 13 The angle of intersection between curve xy = 6 and $x^2y = 12$

(a)
$$\tan^{-1}\left(\frac{3}{4}\right)$$
 (b) $\tan^{-1}\left(\frac{3}{11}\right)$ (c) $\tan^{-1}\left(\frac{11}{3}\right)$ (d) 0°

Solution: (b) The equation of two curves are xy = 6 and $x^2y = 12$ from (i) we obtain $y = \frac{6}{x}$ putting this value of y in

CLICK HERE

equation (ii) to obtain
$$x^{-1}\left(\frac{x}{x}\right) = 12 \Rightarrow 6x = 12 \Rightarrow x = 2$$

Putting $x = 2$ in (i) or (ii) we get, $y = 3$. Thus, the two curves intersect at $P(2, 3)$
Differentiating (i) w.r.t. x, we get $x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = \frac{-y}{x} \Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = -\frac{3}{2} = m_1$

Differentiating (ii) w.r.t. x, we get
$$x^2 \frac{dy}{dx} + 2xy = 0 \Rightarrow \frac{dy}{dx} = \frac{-2y}{x}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = -3 = m_2 \Rightarrow \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \left(\frac{-3}{2} + 3\right) / \left(1 + \left(\frac{-3}{2}\right)(-3)\right) = \frac{3}{11} \Rightarrow \theta = \tan^{-1}\frac{3}{11}.$$

4.2.4 Length of Tangent, Normal, Subtangent and Subnormal

Let the tangent and normal at point P(x,y) on the curve y = f(x) meet the *x*-axis at points *A* and *B* respectively. Then *PA* and *PB* are called length of tangent and normal respectively at point *P*. If *PC* be the perpendicular from *P* on *x*-axis, the *AC* and *BC* are called length of subtangent and subnormal respectively at *P*. If *PA* makes angle ψ with *x*-axis, then $\tan \psi = \frac{dy}{dx}$ from fig., we find that

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

: Length of the subnormal =
$$y \frac{dy}{dx} = \frac{ya^{n-1}}{ny^{n-1}} = \frac{a^{n-1}y^{2-n}}{n}$$

We also know that if the subnormal is constant, then $\frac{a^{n-1}}{n} \cdot y^{2-n}$ should not contain *y*. Therefore, 2-n=0 or n=2.

4.2.5 Length of Intercept made on Axis by the Tangent

Equation of tangent at any point (x_1, y_1) to the curve y = f(x) is $y - y_1 = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1)$ (i)

Similarly solving (i) and (iii) we get, *y*-intercept OR = $y_1 - \left[x_1 \left(\frac{dy}{dx} \right)_{(x_1, y_1)} \right]$

Example: 16 The sum of intercepts on co-ordinate axes made by tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is

(a) a (b) 2a (c) $2\sqrt{a}$ (d) None of these **Solution:** (a) $\sqrt{x} + \sqrt{y} = \sqrt{a} \Rightarrow \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \Rightarrow \therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ Hence tangent at (x, y) is $Y - y = -\frac{\sqrt{y}}{\sqrt{x}}(X - x)$ or $X\sqrt{y} + Y\sqrt{x} = \sqrt{xy}(\sqrt{x} + \sqrt{y}) = \sqrt{axy}$ or $\frac{X}{\sqrt{a}\sqrt{x}} + \frac{Y}{\sqrt{a}\sqrt{y}} = 1$. Clearly its intercepts on the axes are $\sqrt{a}\sqrt{x}$ and $\sqrt{a}\sqrt{y}$. Sum of the intercepts = $\sqrt{a}(\sqrt{x} + \sqrt{y}) = \sqrt{a}\sqrt{a} = a$.

4.2.6 Length of Perpendicular from Origin to the Tangent

Length of perpendicular from origin (0, 0) to the tangent drawn at point $P(x_1, y_1)$ of the curve y = f(x)

$$p = \left| \frac{y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} \right|$$

Get More Learning Materials Here :

🕀 www.studentbro.in

Example: 17 The length of perpendicular from (0, 0) to the tangent drawn to the curve $y^2 = 4(x+2)$ at point (2, 4) is

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) 1

Solution: (c) Di

fferentiating the given equation w.r.t. x,
$$2y \frac{dy}{dx} = 4$$
 at point (2, 4) $\frac{dy}{dx} = \frac{1}{2}$

$$P = \frac{y_1 - x_1\left(\frac{dy}{dx}\right)}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} = \frac{4 - 2\left(\frac{1}{2}\right)}{\sqrt{1 + \frac{1}{4}}} = \frac{6}{\sqrt{5}}.$$

Basic Level If the line y = 2x + k is a tangent to the curve $x^2 = 4y$, then k is equal to [AMU 2002] (d) $-\frac{1}{2}$ (c) - 4 The point on the curve $y^2 = x$ where tangent makes 45° angle with *x*-axis is [Rajasthan PET 1990, 92]

(d) x + y + 3 = 0

(d) None of these

(d) None of these

🕀 www.studentbro.in

[MNR 1980]

Tangent and Normal

(b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) (d) (1, 1)

3. If
$$x = t^2$$
 and $y = 2t$, then equation of the normal at $t = 1$ is
(a) $x + y - 3 = 0$ (b) $x + y - 1 = 0$ (c) $x + y + 1 = 0$

(b) $\frac{1}{2}$

If normal to the curve y = f(x) is parallel to x-axis, then correct statement is [Rajasthan PET 2000] 4.

(a)
$$\frac{dy}{dx} = 0$$
 (b) $\frac{dy}{dx} = 1$ (c) $\frac{dx}{dy} = 0$

The equation of the tangent to the curve $(1 + x^2)y = 2 - x$, where it crosses the *x*-axis, is 5٠ (a) x + 5y = 2(b) x - 5y = 2(c) 5x - y = 2(d) 5x + y - 2 = 0

The equation of tangent to the curve $y = 2\cos x$ at $x = \frac{\pi}{4}$ is 6.

1.

2.

(a) 4

(a)
$$y - \sqrt{2} = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$$
 (b) $y + \sqrt{2} = \sqrt{2}\left(x + \frac{\pi}{4}\right)$ (c) $y - \sqrt{2} = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (d) $y - \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$

For the curve $x = t^2 - 1$, $y = t^2 - t$, the tangent line is perpendicular to *x*-axis where 7.

(a)
$$t = 0$$
 (b) $t = \infty$ (c) $t = \frac{1}{\sqrt{3}}$ (d) $t = -\frac{1}{\sqrt{3}}$

If at any point on a curve the sub-tangent and subnormal are equal, then the tangent is equal to 8.

(b) $\sqrt{2}$ ordinate (c) $\sqrt{2}$ (ordinate) (a) Ordinate

If the tangent to the curve $2y^3 = ax^2 + x^3$ at the point (a, a) cuts off intercepts, α and β on the coordinate axes 9. such that $\alpha^2 + \beta^2 = 61$, then a =

CLICK HERE

(a)
$$\pm 30$$
 (b) ± 5 (c) ± 6 (d) ± 61

If the tangent to the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ at $\theta = \frac{\pi}{3}$ makes an angle α with x-axis, then $\alpha = \frac{\pi}{3}$ 10.

19	4 Application of Derivati	ves									
	(a) $\frac{\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{5\pi}{6}$							
11.	If the tangent to the curve	xy + ax + by = 0 at (1, 1) is inc	lined at an angle $\tan^{-1} 2$ wit	h <i>x</i> -axis, then							
	(a) $a=1, b=2$	(b) $a=1, b=-2$	(c) $a = -1, b = 2$	(d) $a = -1, b = -2$							
12.	The fixed point <i>P</i> on the c is given by	urve $y = x^2 - 4x + 5$ such that	the tangent at <i>P</i> is perpendi	cular to the line $x + 2y - 7 = 0$							
	(a) (3, 2)	(b) (1, 2)	(c) (2, 1)	(d) None of these							
13.	3. The points of contact of the tangents drawn from the origin to the curve $y = \sin x$ lie on the curve										
	$(a) x^2 - y^2 = xy$	(b) $x^2 + y^2 = x^2 y^2$	(c) $x^2 - y^2 = x^2 y^2$	(d) None of these							
14.	The slope of the tangent to	the curve $y^2 = 4ax$ drawn at	point $(at^2, 2at)$ is	[Rajasthan PET 1993]							
	(a) <i>t</i>	(b) $\frac{1}{t}$	(c) - <i>t</i>	(d) $\frac{-1}{t}$							
15.	The slope of the curve $y =$	$\sin x + \cos^2 x$ is zero at the point	nt, where								
	(a) $x = \frac{\pi}{4}$	(b) $x = \frac{\pi}{2}$	(c) $x = \pi$	(d) No where							
16.	The equation of tangent to	the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the	e point (x_1, y_1) is								
	(a) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \frac{1}{\sqrt{a}}$	(b) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{a}$	(c) $x\sqrt{x_1} + y\sqrt{y_1} = \sqrt{a}$	(d) None of these							
17.	A tangent to the curve $y =$	$x^{2} + 3x$ passes through a point	ıt (0, – 9) if it is drawn at th	ne point							
	(a) (- 3, 0)	(b) (1, 4)	(c) (0, 0)	(d) (- 4, 4)							
18.	The sum of the intercepts	made by a tangent to the curv	we $\sqrt{x} + \sqrt{y} = 4$ at point (4, 4)) on coordinate axes is							
	(a) $4\sqrt{2}$	(b) $6\sqrt{3}$	(c) $8\sqrt{2}$	(d) $\sqrt{256}$							
19.	The angle of intersection l	between the curve $y^2 = 16x$ ar	and $2x^2 + y^2 = 4$ is	[Rajasthan PET 1993]							
	(a) 0°	(b) 30°	(c) 45°	(d) 90°							
20.	The equation of normal to	the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the p	point ($a \sec \theta, b \tan \theta$) is								
	(a) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$	(b) $\frac{ax}{\sec\theta} - \frac{by}{\tan\theta} = a^2 - b^2$	(c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$	(d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a - b$							
21.	If tangent to a curve at a p	point is perpendicular to <i>x</i> -axi	s, then at the point								
	(a) $\frac{dy}{dx} = 0$	(b) $\frac{dx}{dy} = 0$	(c) $\frac{dy}{dx} = 1$	(d) $\frac{dy}{dx} = -1$							
22.	If m be the slope of a tang	gent to the curve $e^y = 1 + x^2$ th	en								
	(a) $ m > 1$	(b) <i>m</i> < 1	(c) m <1	(d) $ m \le 1$							
23.	The equation of the tange	nt to the curve $y = e^{ x }$ at the j	point where the curve cuts t	he line $x = 1$ is							
	(a) $x + y = e$	(b) $e(x+y) = 1$	(c) $y + ex = 1$	(d) None of these							

Get More Learning Materials Here : 📕

r www.studentbro.in

24.	The slope of the tangent	to the curve $y = \int_0^x \frac{dx}{1+x^3}$ at t	the point where $x = 1$ is								
	(a) $\frac{1}{2}$	(b) 1	(c) $\frac{1}{4}$	(d)	None of these						
25.	The angle of intersection	between the curves $x^2 = 4ay$	y and $y^2 = 4ax$ at origin is	[Rajasthan PET 199							
	(a) 30°	(b) 45°	(c) 60°	(d)	d) 90 <i>°</i>						
26.	The equation of the norm	nal to the curve $y = x(2 - x)$ at	the point (2, 0) is		[Rajasthan PET 1989, 199						
	(a) $x - 2y = 2$	(b) $x - 2y + 2 = 0$	(c) $2x + y = 4$	(d)	2x + y - 4 = 0						
27.	7. The angle of intersection of the curve $y = 4 - x^2$ and $y = x^2$ is [Rajasthan PET 1989, 1993; MNR 1978]										
	(a) $\frac{\pi}{2}$	(d)	d) None of these								
28.	Tangent to the curve $y =$	e^{2x} at point (0, 1) meets x-ax	xis at the point								
	(a) (0, a)	(b) (2, 0)	(c) $\left(-\frac{1}{2},0\right)$	(d)	Non where						
29.	The equation of the tang	ent to the curve $x = a\cos^3 t, y =$	$= a \sin^3 t a t ' t'$ point is		[Rajasthan PET 1988]						
	(a) $x \sec t - y \csc t = a$	(b) $x \sec t + y \csc t = a$	(c) $x \operatorname{cosec} t - y \sec t = a$	(d)	$xco \sec t + y \sec t = a$						
30.	The length of the tangen	t to the curve $x = a \left(\cos t + \log t \right)$	$ \tan\frac{t}{2} $, $y = a\sin t$ is								
	(a) <i>ax</i>	(b) <i>ay</i>	(c) a	(d)	xy						
31.	The point at the curve y	$= 12x - x^3$ where the slope of	the tangent is zero will be		[Rajasthan PET 1992]						
	(a) (0, 0)	(b) (2, 16)	(c) (3,9)	(d) None of these							
32.	The angle of intersection	between the curves $y = x^2$ a	and $4y = 7 - 3x^3$ at point (1, 1)	is	[Andhra CEE 1992]						
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d)	None of these						
		Advand	ce Level								
33.	Consider the following s	tatements:									
	Assertion (A) : The circl	le $x^2 + y^2 = 1$ has exactly two	tangents parallel to the <i>x</i> -ax	is							
	Reason (R) : $\frac{dy}{dx} = 0$ on t	he circle exactly at the point	ts $(0,\pm 1)$. Of these statements		[SCRA 1996]						
	(a) Both A and R and true	ue and R is the correct explan	nation of A								
	(b) Both <i>A</i> and <i>R</i> are tru	ie but <i>R</i> is not the correct exp	planation of A								
	(c) A is true but R is fal	se									
	(d) A is false but R is tr	ue									
34.	The slope of the tangent	to the curve $x = 3t^2 + 1, y = t^3 - 1$	-1 at $x = 1$ is								

Get More Learning Materials Here : 💶

	(a) 0	(b) $\frac{1}{2}$	(c) ∞	(d) -2
5.	The slope of tangent to the	e curve $x = t^2 + 3t - 8$, $y = 2t^2 - 3t - 8$	2t-5 at the point $(2,-1)$ is	[MNR 1994]
	(a) $\frac{22}{7}$	(b) $\frac{6}{7}$	(c) -6	(d) None of these
6.	At what points of the curve	e $y = \frac{2}{3}x^3 + \frac{1}{2}x^2$, tangent make	es the equal angle with axis	[UPSEAT 1999]
	(a) $\left(\frac{1}{2}, \frac{5}{24}\right)$ and $\left(-1, -\frac{1}{6}\right)$	(b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and (-1, 0)	(c) $\left(\frac{1}{3},\frac{1}{47}\right)$ and $\left(-1,\frac{1}{3}\right)$	(d) $\left(\frac{1}{3},\frac{1}{7}\right)$ and $\left(-3,\frac{1}{2}\right)$
7.	For the curve $xy = c^2$ the s	ubnormal at any point varies	as	
	(a) x^2	(b) x^3	(c) y^2	(d) y^3
8.	The point of the curve $y^2 =$	= 2(x-3) at which the normal i	is parallel to the line $y - 2x + y = $	-1 = 0 is
	(a) (5, 2)	(b) $\left(-\frac{1}{2},-2\right)$	(c) (5, - 2)	(d) $\left(\frac{3}{2},2\right)$
9.	Coordinates of a point on t	the curve $y = x \log x$ at which t	he normal is parallel to the	line $2x - 2y = 3$ are [Rajasthan
	(a) (0, 0)	(b) (<i>e</i> , <i>e</i>)	(c) $(e^2, 2e^2)$	(d) $(e^{-2}, -2e^{-2})$
) .	The abscissa of the points	of curve $y = x(x-2)(x-4)$ when	re tangents are parallel to x	-axis is obtained as
	(a) $x = 2 \pm \frac{2}{\sqrt{3}}$	(b) $x = 1 \pm \frac{1}{\sqrt{3}}$	(c) $x = 2 \pm \frac{1}{\sqrt{3}}$	(d) $x = \pm 1$
l .	The length of the normal a	t point 't' of the curve $x = a(t - t)$	$+\sin t$, $y = a(1 - \cos t)$ is	[Rajasthan PET 2001]
		(b) $2a\sin^3\left(\frac{t}{2}\right)\sec\left(\frac{t}{2}\right)$	(c) $2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$	(d) $2a\sin\left(\frac{t}{2}\right)$
	(a) $a\sin t$	$(2)^{300}(2)$	(2) (2)	
2.	(a) asintThe length of normal to th	e curve $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	(2) $(2)os \theta) at the point \theta = \frac{\pi}{2} is$	[Rajasthan PET 1999;
2.	(a) asintThe length of normal to thAIEEE 2004]	e curve $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	(2) $(2)os \theta) at the point \theta = \frac{\pi}{2} is$	[Rajasthan PET 1999;
2.	 (a) asint The length of normal to th AIEEE 2004] (a) 2a 	(b) $\frac{a}{2}$ (c) $\frac{a}{2} = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	(2) (2) $(2) = \frac{\pi}{2}$ is (c) $\sqrt{2}a$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$
2.	 (a) asint The length of normal to th AIEEE 2004] (a) 2a The area of the triangle for 	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$	(c) $\sqrt{2}a$ (c) $\sqrt{2}a$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on
2.	 (a) asint The length of normal to th AIEEE 2004] (a) 2a The area of the triangle for it is 	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$	(c) $\sqrt{2}a$ (c) $\sqrt{2}a$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on
3.	(a) $a \sin t$ The length of normal to th AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2y_1}{x_1}$	(c) $\sqrt{2a}$ (c) $\sqrt{2a}$ (c) $2a^2$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$
2. 3.	(a) $a \sin t$ The length of normal to th AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$ The normal of the curve x	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a(\sin\theta - \theta)}{\cos\theta}$	(c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $2a^2$ (c) $2a^2$ (c) $2a^2$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$ [DCE 2000]
2. 3.	(a) $a \sin t$ The length of normal to th AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$ The normal of the curve x (a) It makes a constant an	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a^2y_1}{x_1}$ (c) $\frac{a(\sin\theta - \theta)}{\cos\theta}$ (c) $\frac{a(\sin\theta - \theta)}{\cos\theta}$	(c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $2a^2$ (c) $2a^2$ (c) $2a^2$ (c) 1 passes through the c	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$ [DCE 2000] prigin
2. 3. 4.	(a) $a \sin t$ The length of normal to th AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$ The normal of the curve x (a) It makes a constant and (c) It is at a constant distant	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2y_1}{x_1}$ (c)	(c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $\sqrt{2}a$ (c) $2a^2$ (c) $2a^2$ (c) $2a^2$ (c) 1 passes through the c (d) None of these	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$ [DCE 2000] prigin
2. 3. 4.	(a) $a \sin t$ The length of normal to the AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$ The normal of the curve x (a) It makes a constant and (c) It is at a constant distance of the tangent	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2 y_1}{x_1}$ (c) $$	(2) (2) (2) (2) (2) $(2)^{2}$ (c) $\sqrt{2}a$ (c) $2a^{2}$ (c) $2a^{2}$ (c) $2a^{2}$ (c) 1 passes through the c (d) None of these point (2, 0)not on the curve	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$ [DCE 2000] prigin
2. 3. 4.	(a) $a \sin t$ The length of normal to the AIEEE 2004] (a) $2a$ The area of the triangle for it is (a) $\frac{a^2 x_1}{y_1}$ The normal of the curve x (a) It makes a constant and (c) It is at a constant distance of the tangent (a) $y = 0$	(b) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a}{2}$ (c) $\frac{a^2y_1}{x_1}$ (c)	(2) (2) (2) (2) (2) $(2)^{2}$ (c) $\sqrt{2}a$ (c) $2a^{2}$ (c) $2a^{2}$ (c) $2a^{2}$ (c) 1 passes through that (d) None of these point (2, 0)not on the curve (c) $x + y = 0$	[Rajasthan PET 1999; (d) $\frac{a}{\sqrt{2}}$ $xy = a^2$ at the point (x_1, y_1) on (d) $4a^2$ [DCE 2000] origin is (d) None of these

Get More Learning Materials Here : 💻

r www.studentbro.in

			119	prication of Derivatives 197							
	(a) (Subnormal) ^{1/2}	(b) Subnormal	(c) (Subnormal) ^{3/2}	(d) None of these							
47.	The tangent to the curv	$x = y = ax^2 + bx$ at (2,-8) is pa	rallel to <i>x</i> -axis. Then	[AMU 1999]							
	(a) $a = 2, b = -2$	(b) $a = 2, b = -4$	(c) $a = 2, b = -8$	(d) $a = 4, b = -4$							
48.	If the area of the triang equal to	gle include between the axe	s and any tangent to the cur	we $x^n y = a^n$ is constant, then <i>n</i> is							
	(a) 1	(b) 2	(c) $\frac{3}{2}$	(d) $\frac{1}{2}$							
49.	All points on the curve	$y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ at which	the tangents are parallel to	the axis of <i>x</i> , lie on a							
	(a) Circle	(b) Parabola	(c) Line	(d) None of these							
50.	0. If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$ cut each other orthogonally, then										
	(a) $a^2 + b^2 = l^2 + m^2$	(b) $a^2 - b^2 = l^2 - m^2$	(c) $a^2 - b^2 = l^2 + m^2$	(d) $a^2 + b^2 = l^2 - m^2$							
51.	The length of the norma	al at any point on the catena	ary $y = c \cos h\left(\frac{x}{c}\right)$ varies as								
	(a) (abscissa) ²	(b) (Ordinate) ²	(c) abscissa	(d) ordinate							
52.	The point <i>P</i> of the curv by	$y^2 = 2x^3$ such that the tar	ngent at <i>P</i> is perpendicular t	to the line $4x - 3y + 2 = 0$ is given							
	(a) (2, 4)	(b) (1, $\sqrt{2}$)	(c) $\left(\frac{1}{2}, -\frac{1}{2}\right)$	$(d) \left(\frac{1}{8}, -\frac{1}{16}\right)$							
53.	The length of the norma	al to the curve $y = a \left(\frac{e^{-x/a} + e}{2} \right)$	$\frac{x/a}{a}$ at any point varies as the set of the set	he							
	(a) Abscissa of the poir	nt	(b) Ordinate of the po	(b) Ordinate of the point							
	(c) Square of the absci	ssa of the point	(d) Square of the ordinate of the point								
54 .	If the parametric equa	tion of a curve given by $x =$	$= e^t \cos t$, $y = e^t \sin t$, then the t	angent to the curve at the point							
	$t = \frac{\pi}{4}$ makes with axes	of <i>x</i> the angle									
	(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$							
55.	For the parabola $y^2 = 4$	ax, the ratio of the subtange	ent to the abscissa is								
	(a) 1:1	(b) 2:1	(c) <i>x</i> : <i>y</i>	(d) $x^2: y$							
56.	Tangents are drawn fro	om the origin to the curve y	$= \cos x$. Their points of conta	ct lie on							
	(a) $x^2y^2 = y^2 - x^2$	(b) $x^2y^2 = x^2 + y^2$	(c) $x^2y^2 = x^2 - y^2$	(d) None of these							
57.	If $y = 4x - 5$ is a tangent	t to the curve $y^2 = px^3 + q$ at	t (2, 3) then								
	(a) $p = 2, q = -7$	(b) $p = -2, q = 7$	(c) $p = -2, q = -7$	(d) $p = 2, q = 7$							
58.	The curve $y - e^{xy} + x = 0$	has a vertical tangent at th	e point								
	(a) (1, 1)	(b) At no point	(c) (0, 1)	(d) (1, 0)							

Get More Learning Materials Here : 💻

🕀 www.studentbro.in

Application of Derivatives 107

59.	. If the tangent and normal at any point P of parabola meet the axes at T and G respectively then									
	(a) ST = SG.SP	(b) $ST = SG = SP$	(c) ST \neq SG = SP	(d) $ST = SG \neq SP$						
60.	Slope of the tangent to the	curve $y = x^3 $ at origin is								
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) o						
61.	The line $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 2$, touc	ches the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$	at point (a , b) then $n =$	[Rajasthan PET 1998]						
	(a) 1 n	(b) 2	(c) 3	(d) For non-zero values of						
62.	The sum of the squares of	intercepts made by a tangent	to the curve $x^{2/3} + y^{2/3} = a^{2/3}$	³ with coordinate axes is [Rajastha						
	(a) a	(b) 2a	(c) a^2	(d) $2a^2$						
63.	The point of the curve $y = $.	$x^2 - 3x + 2$ at which the tangent	nt is perpendicular to the y :	= x will be						
	(a) (0, 2)	(b) (1, 0)	(c) (-1, 6)	(d) (2, -2)						
64.	The equation of normal to	the curve $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at the p	oint $(8, 3\sqrt{3})$ is	[MP PET 1996]						
	(a) $\sqrt{3}x + 2y = 25$	(b) $x + y = 25$	(c) $y + 2x = 25$	(d) $2x + \sqrt{3}y = 25$						
65.	The angle of intersection b	between the curves $xy = a^2$ and	d $x^2 + y^2 = 2a^2$ is	[Rajasthan PET 1998]						
	(a) 0°	(b) 30°	(c) 45°	(d) 90°						
66.	The subtangent to the curv	we $x^m y^n = a^{m+n}$ at any point is	proportional to	[Rajasthan PET 1998]						
	(a) Ordinate	(b) Abscissa	(c) (Ordinate) ⁿ	(d) (Abscissa) ⁿ						
67.	If tangents drawn on the c	urve $x = at^2$, $y = 2at$ is perpendent	licular to <i>x</i> -axis then its poin	nt of contact is						
	(a) (<i>a</i> , <i>a</i>)	(b) (a, 0)	(c) (0, a)	(d) (0, 0)						
68.	Tangents are drawn to the are	e curve $y = x^2 - 3x + 2$ at the p	oints where it meets <i>x</i> -axis.	Equations of these tangents						
				[Rajasthan PET 1993]						
	(a) $x - y + 2 = 0, x - y - 1 = 0$	(b) $x + y - 1 = 0, x - y = 2$	(c) $x - y - 1 = 0, x - y = 0$	(d) $x - y = 0, x + y = 0$						
69.	If the tangents at any po $p^{-4/3} + q^{-4/3}$ is	int on the curve $x^4 + y^4 = a^4$	cuts off intercept p and	q on the axes, the value of						
	(a) $a^{-4/3}$	(b) $a^{-1/2}$	(c) $a^{1/2}$	(d) None of these						
7 0.	At any point (x_1, y_1) of the	curve $y = ce^{x/a}$								
	(a) Subtangent is constant	I.								
	(b) Subnormal is proportio	onal to the square of the ordir	nate of the point							
	(c) Tangent cuts <i>x</i> -axis at	$(x_1 - a)$ distance from the orig	<u>g</u> in							
	(d) All the above									
71.	The equation of the tangen	to the curve $y = 1 - e^{x/2}$ at the	ne point where it meets y-ax	kis is						

Get More Learning Materials Here : 💻

Regional www.studentbro.in

			Аррп	cation of Derivatives 199		
	(a) $x + 2y = 2$	(b) $2x + y = 0$	(c) $x - y = 2$	(d) None of these		
72.	The coordinates of the po	ints on the curve $x = a(\theta + \sin \theta)$	θ , $y = a(1 - \cos \theta)$, where tang	ent is inclined an angle $\frac{\pi}{4}$ to		
	the <i>x</i> -axis are					
	(a) (<i>a, a</i>)	(b) $\left(a\left(\frac{\pi}{2}-1\right),a\right)$	(c) $\left(a\left(\frac{\pi}{2}+1\right),a\right)$	(d) $\left(a,a\left(\frac{\pi}{2}+1\right)\right)$		
73.	If equation of normal at a	point $(m^2 - m^3)$ on the curve	$x^3 - y^2 = 0$ is $y = 3mx - 4m^3$, then m^2 equals		
	(a) O	(b) 1	(c) $-\frac{2}{9}$	(d) $\frac{2}{9}$		
74.	For a curve $\frac{(\text{Length of norm})}{(\text{Length of tangent})}$	$\frac{ a ^2}{ a ^2}$ is equal to				
	(a) (Subnormal)/(Subtan (Subtangent/Subnormal) ²	gent) (b) (d) Constant	(Subtangent)/(Subnorma	l) (c)		
75.	If the curve $y = x^2 + bx + c$, touches the line $y = x$ at the	point (1, 1), the values of <i>b</i>	and c are		
	(a) – 1, 2	(b) -1, 1	(c) 2, 1	(d) -2, 1		
76.	Let <i>C</i> be the curve $y^3 - 3x$ horizontal and vertical res	y + 2 = 0. If H and V be the sessectively, then	et of points on the curve C	where tangent to the curve is		
	(a) $H = \{(1,1)\}, V = \phi$	(b) $H = \phi, V = \{(1,1)\}$	(c) $H = \{(0,0)\}, V = \{(1,1)\}$	(d) None of these		
77.	If the line $ax + by + c = 0$ is	s a normal to the curve $xy = 1$	then			
	(a) $a, b \in R$	(b) $a > 0, b > 0$	(c) $a < 0, b > 0 \text{ or } a > 0, b < 0$	0 (d) $a < 0, b < 0$		
78.	If the tangent to the curve the curve, then <i>a</i> , <i>c</i> , <i>b</i> are	$f(x) = x^2$ at any pint $(c, f(c))$ in	is parallel to line joining the	e points $(a, f(a))$ and $(b, f(b))$ on		
	(a) H.P.	(b) G.P.	(c) A.P.	(d) A.P. and G.P. both		
79 .	The area of triangle forme	ed by tangent to the hyperbola	a $2xy = a^2$ and coordinates a	axes is		
	(a) a^2	(b) $2a^2$	(c) $\frac{a^2}{2}$	(d) $\frac{3a^2}{2}$		
80.	The angle of intersection	between the curves $r = a \sin(\theta - \theta)$	$-\alpha$) and $r = b\cos(\theta - \beta)$ is			
	(a) $\alpha - \beta$	(b) $\alpha + \beta$	(c) $\frac{\pi}{2} + \alpha + \beta$	(d) $\frac{\pi}{2} + \alpha - \beta$		
81.	The distance between the	origin and the normal to the	cure $y = e^{2x} + x^2$ at the point	t $x = 0$ is		
	(a) $2\sqrt{5}$	(b) $\frac{2}{\sqrt{5}}$	(c) √5	(d) None of these		
82.	If the curve $y = ax^2 - 6x + ax^2 - 6x +$	b passes through (0, 2) and h	has its tangent parallel to x	-axis at $x = \frac{3}{2}$, then the value		
	of a and b are			2		
				[SCRA 1999]		
	(a) 2, 2	(b) -2, -2	(c) -2, 2	(d) 2, -2		

Get More Learning Materials Here : CLICK HERE ()

r www.studentbro.in

.

83.	If at any point <i>S</i> of the $p(SN) = q(ST)^2$ then p/q is [Rajasthan PET 1999; EAMC	e curve $by^{2} = (x + a)^{3}$ the re equal to ET 1991]	lation between subnormal	<i>SN</i> and subtangent <i>ST</i> be							
	(a) $\frac{8b}{27}$	(b) $\frac{8a}{27}$	(c) $\frac{b}{a}$	(d) None of these							
84.	The points on the curve 9y	$v^2 = x^3$ where the normal to the	ne curve cuts equal intercep	ts from the axes are							
	(a) (4, 8/3), (4, -8/3)	(b) (1, 1/3) (1, -1/3)	(c) (0, 0)	(d) None of these							
85.	The equation of the norma	al to the curve $y^2 = x^3$ at the p	ooint whose abscissa is 8, w	ill be							
	(a) $x \pm \sqrt{2}y = 104$	(b) $x \pm 3\sqrt{2}y = 104$	(c) $3\sqrt{2}x \pm y = 104$	(d) None of these							
86. At any point (except vertex) of the parabola $y^2 - 4ax$ subtangent, ordinate and subnormal are in											
	(a) AP	(b) GP	(c) HP	(d) None of these							
87.	At what point the slope of	at point the slope of the tangent to the curve $x^2 + y^2 - 2x - 3 = 0$ is zero									
	(a) (3 0); (-1, 0)	(b) (3,0); (1,2)	(c) (-1, 0); (1, 2)	(d) (1, 2); (1, -2)							
88.	Let the equation of a cur	ve be $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	$(s \theta)$. If θ changes at a con	stant rate k then the rate of							
	change of the slope of the	tangent to the curve at $\theta = \frac{\pi}{3}$	is								
	(a) $\frac{2k}{\sqrt{3}}$	(b) $\frac{k}{\sqrt{3}}$	(c) <i>k</i>	(d) None of these							
89.	The equation of a curve	is $y = f(x)$. The tangents at	(1, f(1)), (2, f(2)) and $(3, f(3))$	makes angles $\frac{\pi}{6}, \frac{\pi}{3}$ and $\frac{\pi}{4}$							
	respectively with the posi	tive direction of the <i>x</i> -axis. Th	then the value of $\int_2^3 f'(x) f''(x) dx$	$x + \int_{1}^{3} f''(x) dx$ is equal to							
	(a) $-\frac{1}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{3}}$	(c) 0	(d) None of these							
90.	$P(2,2)$ and $Q\left(\frac{1}{2},-1\right)$ are t	wo points on the parabolas y	$v^2 = 2x$. the coordinates of	the point <i>R</i> on the parabola,							
	where the tangent to the c	curve is parallel to the chord <i>I</i>	PQ, is								
	(a) $\left(\frac{5}{4},\sqrt{\frac{5}{2}}\right)$	(b) (2, - 1)	(c) $\left(\frac{1}{8}, \frac{1}{2}\right)$	(d) None of these							
91.	The number of tangents to	the curve $x^{3/2} + y^{3/2} = a^{3/2}$,	where the tangents are equa	ally inclined to the axes, is							
	(a) 2	(b) 1	(c) 0	(d) 4							
92.	If at each point of the condition of the <i>x</i> -axis the	urve $y = x^{3} - ax^{2} + x + 1$ the t n	angent is inclined at an a	cute angle with the positive							
	(a) $a > 0$	(b) $a \le \sqrt{3}$	(c) $-\sqrt{3} \le a \le \sqrt{3}$	(d) None of these							

Get More Learning Materials Here : 💻

Regional www.studentbro.in

Answer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	b	a	с	a	с	a	b	a	d	b	a	с	b	b	b	a	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	d	a	d	a	с	с	b	С	b	d	a	a	b	a	d	с	d	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	с	с	a	b	с	a	b	с	b	d	d	d	b	с	a	d	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	с	b	d	a	b	d	b	a	d	d	с	d	a	b	b	с	с	a	d
81	82	83	84	85	86	87	88	89	90	91	92								
b	a	a	a	b	b	d	d	a	с	b	с								

